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Carbon Monoxide measured by AIRS

co_mmr_midtrop 30-day min ending on 2002-08-31
min=83.429170 median=119.91053 max=288.33980

Faof ﬂ* T I [ I T[T [V [T T [ TTT[]
60°N >
el |

WAL

1

-
—
—
—
—]

R B EN R BN AN SN AT B AN

60°S '
40 60 80 100 120 140 160
2 = s z & 5 5 5 g
o n o wn <t (o)) m 0
0 m ()] < =4 =4
r—l simd
' 60 .80 100 120 140 160 180 200
ppbv
170 &

160
150
140
130

12902 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

northern (40°N-50°'N) median



Global Model of Carbon Monoxide
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The physical/chemical modeling system: ----A spectrum of coupled scales

From: Xuemei Wang, Jinan University
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~ Modeling of Chemical Processes

- Modeling of Resolved Transport

- Modeling of Subscale- Processes
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What is a Model?

A modelis a representation of part of the Universe in
which we live and evolve.

Physical models can be viewed as mathematical
representations of the fundamental laws that govern
a system under study.

These laws express some fundamental concepts (such
as conservation of energy)



What is a Model?

Models do not produce new concepts or laws that are not already
included in the model formulation or input.

By combining a large amount of information, they produce a system
behavior that cannot be anticipated from simple considerations.

Models can be used to generate knowledge

Models are used as diagnostic tools to analyze a system and
understand observational data, or as prognostic tools to predict the
behavior of a system under yet unknown situations.



What is a Model?

Models often capture limited aspects of the functioning of a system; they
simplify reality and focus on a particular issue; they may not be fully
“objective” and may “embellish” reality.

The solutions of the model equations are not easily obtained. Since in
most cases, no solution exists, numerical approximations must be found.

A system can be deterministic (predictable once initial conditions are
specified) or chaotic (when the solution is strongly influence by initial
conditions).



Ditferent Types of Models

Conceptual Models that help to assess the consequences of some
hypotheses. These models are usually very simple and focused on
some issue, but trigger interest and sometimes new research. There
is no attempt to reproduce perfectly the real world.

Detailed Models that try to reproduce as closely as possible the real
world. Their success depends on the level of fidelity in representing
real situations. Examples: Numerical Weather Forecast Models.



What is a Model?

Simulation modeling represents a way to create virtual copies
of the Earth in cyberspace. These virtual copies (often
supported by computing devices) can be submitted to all kinds
of forcings and experiments without jeopardizing the true
specimen.

For example, it is possible to explore the domains in the Earth
system “phase space” that are reachable without creating
catastrophic and irreversible damage to mankind.






~ Forward and Inverse Problem

oy e W= Forward problem

From Cathy Clerbaux.



Forward and Inverse Problem

From Cathy Clerbaux.
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Forward and Inverse Problem

Schematic for Global
Atmospheric Model
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Eulerian Models

* We are following the evolution of the concentration of

chemical species in a fixed volume (fixed framework).

* = 0D, 1D, 2D, 3 fixed grids
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Three-dimensional Eulerian Models

This model type represents the most comprehensive, but also
computationally most expensive type of models. The earth® atmosphere
is divided into thousands of ,,grid boxes* of more or less regular shape.

Examples:

Grid box boundaries over Europe with 64x32 boxes (left), and a 1°x1° grid
(right)



Lagrangian Model

* We follow the displacement of a large number of air parcels, and
derive the evolution of the concentration of chemical species in

each air parcel. The frame follows the air parcels
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The Continuity Equation (IMass Conservation)

Fy (x — dx/2) F(x +dx/2)

Area dA=dy dz
X —dx2

_[F (x-ax/2)-F (x+dx/2)]dxdy  O(pu)
dx dy dz ox




Atmospheric Model

(4) The continuity equation or the conservation of mass

0 S
a_ft’ = —V.(pV)
/ \
Local changes
Term related to
transport

(5) The conservation of water vapour mass

99 _ _ (i) + p(E —C)

ot
Local changes Moisture

Term related to source/sink
transport



Atmospheric Model

(6) The continuity equation or the conservation of mass for chemical species

Z_'f - _6_(,0\7) +P-l « Loga:l protduction
and loss terms
/ \
Local changes
Term related to
transport

Here p represents now the concentration of N chemical species that are
related through chemical reactions.

p is therefore a vector of N elements.

L is generally expressed as the product of a matrix by a concentration vector
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Atmospheric Model

(6) The first law of thermodynamics (the conservation of
energy)

P,
Changes in — [ ™~
internal energy | Work
Heat Iinput

(7) The equation of state
p=pR,T

+ model “physics”™. parameterisation of subgrid-scale
processes, radiative fluxes, turbulent fluxes, etc.
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Representationin a Model
of the Atmospheric Quantities

The analytic solution of the atmospheric equations is not available,
and these equations have to be solved by humerical methods.

Equations can be discretized and solved at finite locations and
finite time intervals. The locations can be points on a numerical
grid or finite volumes (average values in a small volume of the
domain).

Another approach in global models is to expand on the sphere the
quantities as a finite series of waves. These are the spectral
models.



-

i




int models

Id-po

Gr.

nw

N

“‘
\_\\\‘\\\\\

-

' .\}\\

Problem at the poles!



Spectral Methods

Over a periodic 1-D domain, we can express any function ¥(x) (such as
the temperature) as the sum over all wavenumbers k of sine functions
with different amplitudes d, and phases ¢, :

W(x,t) = $5 a(t) sin[kx + @,]

The component with the lowest frequency is called the fundamental.
With higher frequencies, the components are the harmonics.

When all variables are replaced by expressions of that type, the resulting
system of equation is reduced to a system of ordinary differential
equation for the unknown g, (t) which depends only on time.



Fourier decomposition of a square function

Fourier decomposition of a square function y, with the fundamental
y, = 3/7t sin 27t

and the two harmonics
Y5 = 4/(37) sin 67t
ys = 4/(570) sin 107t
the sum
y' =y, +Yy, +Yy; (dotted line).



Spectral Method on a Sphere

Application of the spectral method to the sphere can be done by expanding
the functional forms W(A, p, 7) of the different variables as a function of longitude
A [0, 2n] and sine of latitude p [-1, 1]) using normalized spherical harmonics
Y™(A, n) (see Figure 4.21):

T S‘ S‘ a" (4.252)

m=—M n=|m

where a™(¢) are the spectral coefficients, which are the unknowns to be determined

as a function of time z. The choice of parameters M and N(m) define the truncation of
the expansion.



Spectral Method on a Sphere: Y ™ (A,1)

They are expressed as a combination of sines and cosines (or equivalently by
complex exponentials) to represent the periodic variations in the zonal direction,
and by real associated Legendre functions of the first kind P} () (see Box 4.11) to
account for the variations in the meridional direction. Thus,

Y (h ) = Py (w)e™ (4254)
Representation of the characteristics of three spherical harmonics with total wavenumber n = 6. (a): zonal
wavenumber m = 0, (b): m = 3 and (c): m = 6. From Williamson and Laprise (1998).

Here, index m represents the zonal wavenumber; its highest value M specifies the
number of waves retained in the zonal direction. Index n — |m| is called the @ &
meridional nodal number.

The type of truncation to be adopted for expression (4.252) is determined by the
relation between the number of waves allowed in the zonal and the meridional
directions. If N is chosen to be equal to M, the truncation is said to be triangular.
If it is such that N = M + |m|, it is called rhomboidal (Figure 4.22).
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Spectral Methods versus Grid Models

The advantage of the spectral methods is that the space derivatives can be calculated
exactly. Numerical integration is only over time.

With the proper choice of parameters, the spectral method provides accurate and
stable results; it can be conservative. It is therefore widely used in general circulation
models of the atmosphere.

The method is not well suited for new computer architecture with massively parallel
processors.

In addition, it is not shape preserving (monotonic, positive definite). Overshoots and
undershoots (negative values) can be produced. There, it not used in chemical
transport models. Grid models are preferred to treat local chemical processes.
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Chemistry

Chemical systems are assumed to be represented by a system of
N nonlinear equations, where N is the number of species
included in the model. In global chemical transport models, N is
typically 100-200, but in complex box models, it can reach
several thousands.

Because of the very different chemical lifetimes involved, the
system is said to be stiff. Appropriate numerical methods must
be adopted to solve stiff systems



Explicit and Implicit Algorithms

Consider a generic function W(t) that represents the concentration (vector of
N elements) for N chemical compounds. The equation for the system is:

with the specified initial condition N,

Explicit Method
\I’]Hl — \I’n 1+ Af S(rﬂjwﬂ)

Implicit Method

n+1

\I’ — \I’H + Af S(f}?ﬂ :, \I’rHl)




Explict versus Implicit Methods

Fully explicit Methods:

* Simple to solve, but stability considerations constrain the
integration time steps to prohibitively small values.

* The positivity of the solution is not guaranteed.

Fully Implicit Methods:

* Unconditionally stable, so that the time step can be large, limited
by accuracy considerations.

* Require the resolution of a system of algebraic equations at each
time step and each grid point
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The Gear Method

Accuracy and stability can be increased through multi-level methods (here K time levels):

. X,
v =y T A s, W)
k=0 k=1

A specific application is the Gear algorithm:

3¢
n+l1 n+l
lIl = Z aklll + A‘f Y S(‘i“MH 2 IIJ )
k=0

This implicit equation is solved by an iterative method:

(1= 7 3)o (Wi =W ) = 0 + A Y S0, W) + S0y

k=0

Automatic adjustment of the order of the method and of the time step to maximize
stability and accuracy
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Simplified Mechanism for Pentane (C.H,,)

Multiple NO>NO, conversions
produce O,

Organic nitrates allow long-range
transport of NOx

Radical sinks:
Some are temporary, producing
HOXx later

Some have low vapor pressures,
can make organic aerosols

NO -> NO2 conversion
NOXx sink
radical sink
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Self-Generating Mechanism [Aumont et al., 2005]
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Requirements for a scheme of
Numerical Advection

Accuracy: Solution close to the true solution

Stability: Solution should not diverge from its true state
Monotonicity: No spurious extremum

Conservation: Mass must be conserved if no source/sink
Transportivity: transport must be downwind

Locality: Solutions not affected by perturbations far away
Correlativity: Relations between species preserved
Flexibility: Implemented for different grids and resolutions
Efficiency: Computationally fast



The (1-D) Advection Equation

Consider the advection of function W(x) along direction x with a constant velocity ¢

The initial distribution de the function is given by G(x)

Y(x,0)=G(x)

The problem is well-posed if the value of function W is provided as time evolves
(upstream boundary condition)

¥ (0,1)=H,()

The analytic solution of the 1-D advection equation is

Y(x,t)= G(x—ct) (Translation of the signal)




1-D’Advection ot a signal with a
constant velocity




Methods with Space-Centered Differences

We approximate the space derivative by a centered difference

This algorithm is unconditionally unstable (for all values of )



Methods with Space-Uncentered Differences

The method is positive
definite, but very diffusive

This method assumes that the value of the
function at point j is affected only by the value at
the upwind point j-1

CFL
criteria

Stable if a =
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Method Algorithm Stability Accuracy | Remarks

Euler =gt /2 (- ) Unconditionally | Af, Ax’
Forward unstable
(FTCS)
Lax prl=1s (‘P]ﬂ +¥. ") — /2 (P~ P;,") | Stablefora<1 | Az, Ax* Dissipative
Leapfrog ¥ T ol gt — ") Stable fora<1 | AP ,Ax° Dispersive
Lax-Wendroff ‘P"” P - 02 (P - W) Stable fora <1 | Af, Ax*
£ o2 (‘Fm —2 ¥+ Y¥,)
Implicit =" — a2 (‘PjH“” -¥,") Unconditionally | Az, Ax’
stable
Crank- gl = ‘P“ /4 [(P™ =P ) Unconditionally | A, Ax’
Nicholson + (‘P,+1 ~ ¥ 1] stable
Matsuno Y= W w2 (Wi - W) Stable fora<1 | At, Ax’ Dissipative
+ nﬁq (\P,ﬂ —2 ¥+ P50
Heun P =t g2 (‘PJH - %" Unconditionally | A7, Ax’
+ a8 (iPﬂ —2 ¥+ . ,0) unstable
Kurihara Prl= g um[(l{riﬂﬂ'l -¥.,™) Stablefora<1 | Ar, Ax” Not
+ (‘{:&EI"(‘—P‘P}]"]% S e dissipative
+ o i#2 — | +Wia"
Fourth-order | ¥ —‘P{“ /12 ij_z“” ~8 ¥, Unconditionally | Af, Ax*
(implicit) + 8W " — W, stable
Upstream =Y —a (P - ") Stable fora<1 | At, Ax Monotonic
- (a>0) Dassipative
Upstream ¥, ml = =¥"—a (¥ %) Stable fora <1 | At, Ax Monotonic
(x<0) Dissipative




Comparison of the
performance of
different
elementary
methods to treat
the linear
advection
algorithm




Which method should we use?

Centered methods are not positive definite, and characterized by
noise.

Some algorithms (Euler-forward method) is unconditionally unstable.
Other algorithms can be stable under the CFL condition, but are not
free of oscillations.

Uncentered methods (upwind or upstream) are free of oscillation
(no phase lag), thus positive definite, but are diffusive. Usually stable
for the CFL condition.

More advanced methods have been developed to address some of
these problems. The best strategy is to improve the upwind method.



Higher. Order Approaches:
The Prather Method

The distribution of the function Y(x,y) inside a grid box Ax Ay is
represented by a second-order polynomial:

WY(x,y)=a,+a,x+a,x>+b, y+b,y>+cxy

During a time step At, we use the upstream method and advect
successively in each direction x and y the mean value as well as the
first derivative (slope) and second derivative (curvature). The
method has the advantages of the upwind method but is much less
diffusive.



The semi-Lagrangian Method

Arrival
point

(T4, tnt1)

Departure D
point f—- 4 N
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Exchanges between the Boundary layer
and the Free troposphere
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Convective
Vertical
Exchanges

Convective cloud
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Reynolds Decomposition: Turbulence

Any variable is decomposed as a mean (resolved) component
and a subscale (unresolved) component (whose mean is zero):

A=A
Flux of chemical species: Flux= pV=(pV+p'V"
Parameterization p'V'+—KVp
Reaction between A and B: A+B->C

Mean chemical rate: kAB=kAB+ kA'B’




~ Treating Turbulence:
Large Eddy Simulations for high-resolution
boundary layer simulations

Urban Large-Eddy Simulation 0o »
eddies @ @ m Institute of Meteorology and Climatology Visualization created with VAPOR (www.vapor.ucar.edu)
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Surface Exchanges:
Representation of the Surface

Retomatal J(PAR, soil moisture)

depth (~ 60 m)

Bare soil

Wet surface

3.759 (~ 300 km)

Soil moisture

5 soil layers
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Emissions (1)

In current models, emissions are typically specified as monthly
mean mass fluxes with a spatial resolution of several kilometers.

In contemporary models, natural emissions are often calculated
from emission models (ex. wildfires)

The compilation of emissions inventories is a labor-intensive task;
these inventories constitute one of the major uncertainties in
modeling.

Attempts have been made to estimate “top-down’”’ emissions
based on satellite and in-situ observations and using ,,inverse*
models.
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@ _bit)genic emissions (plants and soils)

~ volcanic emissions

~_oceanic emissions

agricultural emissions (incl. fertilisation)

etc.




NOx Emissions







Dry Deposition

Transport of gaseous and particulate species from the atmosphere
onto surfaces in the absence of precipitation

Controlling factors: atmospheric turbulence, chemical properties of
species, and nature of the surface

S

v4: deposition velocity
C: concentration of species at reference height (~10 m)




Dry deposition velocity

Ra
Resistance of: Rb
Resistance of: R A
dynamic Resistance of:
sublayer
wet surface

interfacial laminary

sublayer sub-layer stomata
vegetation dry surface
sublayer -






Wet deposition

Cloud Water

chemical reactions evaporation

evaporation

nucleation _ dissolution
rain
formation
particles _ & Qgaseous species
N air reaCtIOI’]S IN alr
below-cloud below-cloud
scavenging 4 scavenging

evaporation evaporation

Rain, snow

chemical reactions

interception l

» Wet deposition after Seinfeld&Pandis, 1998






